주 콘텐츠로 건너뛰기

11 min read

딥 러닝과 머신 러닝의 비교: 차이는 무엇일까요?

딥 러닝과 머신 러닝의 차이점을 이해하기 위한 가장 쉬운 요점은, 모든 딥 러닝은 머신 러닝이지만, 모든 머신 러닝이 딥 러닝은 아니라는 점입니다.

출처 Patrick Grieve, 저자

최종 업데이트: 2023년 09월 09일

딥 러닝과 머신 러닝의 비교

인공 지능(AI)의 최신 발전 기능을 이해하는 것은 매우 어려워 보일 수 있지만 관심 있는 기본 사항을 살펴보면 AI 혁신을 두 가지 개념, 즉 머신 러닝 딥 러닝으로 요약할 수 있습니다.

머신 러닝과 딥 러닝의 예는 어디에나 있는데, 그것은 바로 자율주행차를 현실화하는 것이고, Netflix에서 여러분이 다음에 보고 싶어할 프로그램을 파악하는 방법, Facebook에서 사진에 찍힌 사람을 인식하는 방법 등입니다.

머신 러닝과 딥 러닝은 흔히 번갈아 사용할 수 있는 유행어처럼 보이지만, 이 두 사이에는 차이점이 있습니다. 그렇다면, AI에 대한 대화를 지배하는 이 두 가지 개념은 정확히 무엇이며, 어떻게 다를까요? 계속해서 더 자세한 내용을 살펴보세요.

딥 러닝과 머신 러닝의 비교

머신 러닝과 딥 러닝의 차이를 이해하는 데 있어 첫 번째 단계는 딥 러닝머신 러닝에 해당한다는 점입니다.

구체적으로, 딥 러닝은 머신 러닝이 진화한 것으로 여겨집니다. 딥 러닝은 기계가 사람의 도움 없이도 정확한 결정을 내릴 수 있도록 해주는 프로그래밍 가능한 신경망을 사용합니다.

하지만 우선 머신 러닝을 정의해 보겠습니다.

머신 러닝이란?

머신 러닝의 정의: 데이터를 분석하고, 데이터로부터 학습한 다음, 학습한 것을 적용해 정보에 입각한 결정을 내리는 알고리즘을 포함하는 인공 지능의 애플리케이션입니다.

머신 러닝의 작동 원리

머신 러닝 알고리즘의 쉬운 예는 온디맨드 음악 스트리밍 서비스입니다. 청취자에게 추천할 새 노래나 아티스트를 결정하기 위해, 머신 러닝 알고리즘은 청취자의 선호 사항을 음악적 취향이 비슷한 다른 청취자와 연관시킵니다. 간단히 AI라고 흔히 불리는 이 기술은 자동화된 추천을 제공하는 많은 서비스에서 사용됩니다.

머신 러닝은 수많은 복잡한 수학/코딩으로, 결국 손전등, 자동차 또는 컴퓨터 화면이 작동하는 것과 같은 방식으로 기계적 기능을 수행합니다. '머신 러닝'이 가능하다는 것은 주어진 데이터를 사용하여 기능을 수행하고, 그리고 시간이 지남에 따라 그 기능이 점차적으로 향상되는 것을 의미합니다. 예를 들어 '어두워'라고 말할 때마다 불이 켜지는 손전등이 '어둠'이라는 단어가 포함된 다른 구절을 인식하는 것입니다.

머신 러닝은 악성 코드를 추적하는 데이터 보안 회사부터 유리한 거래에 대해 알림을 받고 싶어하는 재무 전문가에 이르기까지 여러 산업에 걸쳐 모든 종류의 자동화된 작업에 연료를 공급합니다. AI 알고리즘은 가상 개인 비서처럼 끊임없이 학습하도록 프로그래밍되었으며, 이 작업을 상당히 잘 수행합니다.

딥 러닝과 심층 신경망에 대한 이야기를 시작하면, 기계가 새로운 기술을 배우는 방법이 정말 재미있고 흥미진진해지기 시작합니다.

딥 러닝이란?

딥 러닝의 정의: 알고리즘을 계층으로 구성하여 자체적으로 배우고 똑똑한 결정을 내릴 수 있는 '인공 신경망'을 만드는 딥 러닝의 하위 분야입니다.

딥 러닝의 작동 원리

딥 러닝 모델은 인간이 결론을 내리는 방식과 유사한 논리 구조를 사용하여 데이터를 지속적으로 분석하도록 설계되었습니다. 이를 달성하기 위해 딥 러닝 애플리케이션은 인공 신경망이라는 계층화된 알고리즘 구조를 사용합니다. 인공 신경망의 설계는 인간 두뇌의 생물학적 신경망에서 영감을 얻어, 표준 머신 러닝 모델보다 훨씬 더 뛰어난 학습 시스템을 제공합니다.

딥 러닝 모델이 잘못된 결론을 도출하지 않도록 보장하는 것은 까다롭습니다. AI의 다른 예시처럼, 학습 프로세스를 정확하게 만들려면 많은 교육이 필요합니다. 하지만 의도대로 작동한다면, 기능적인 딥 러닝은 많은 사람들이 진정한 인공 지능의 중추라고 생각하는 것이자 과학의 경이로움으로 여겨집니다.

딥 러닝의 좋은 예는 Google의 AlphaGo입니다. Google은 날카로운 지능과 직관이 필요한 것으로 알려진 Go라는 이름의 추상적인 보드 게임을 배우는, 자체 신경망을 가진 컴퓨터 프로그램을 만들었습니다. AlphaGo의 딥 러닝 모델은 표준 머신 러닝 모델과는 달리 특정 동작을 수행해야 할 시점을 알려주지 않고도, 전문적인 Go 플레이어와 대결하여 인공 지능에서는 전혀 볼 수 없었던 수준에서 플레이하는 방법을 배웠습니다.

AlphaGo가 게임에서 세계적으로 유명한 여러 '마스터'들을 상대로 이겼을 때 상당한 화제가 되었는데, 기계가 게임의 복잡한 기술과 추상적인 측면을 파악했을 뿐 아니라 최고의 플레이어 중 하나가 된 것이었습니다. 그것은 인간 지능과 인공 지능의 대결이었고, 후자가 1위를 차지했습니다.

좀 더 실용적인 사용 사례를 들자면, 사진을 기반으로 꽃이나 새의 종류를 식별할 수 있는 이미지 인식 앱을 상상해 보세요. 그 이미지 분류는 심층 신경망에 의해 작동됩니다. 딥러닝은 또한 음성 인식과 번역을 안내하고, 말 그대로 자율주행차를 운전합니다.

머신 러닝과 딥 러닝의 차이점

실질적으로 딥 러닝은 머신 러닝의 하위 개념에 불과합니다. 사실, 딥 러닝은 머신 러닝에 해당하 며 비슷한 방식으로 기능합니다. 이러한 이유로 이 두 용어가 흔히 대강 혼용되기도 하지만 둘의 기능은 엄연히 다릅니다.

기본적인 머신 러닝 모델은 새로운 데이터가 유입됨에 따라 특정 기능을 수행하는 데 점점 더 능숙해지지만, 여전히 인간의 개입이 필요합니다. AI 알고리즘이 부정확한 예측을 반환하면 엔지니어가 개입하여 조정해야 합니다. 딥 러닝 모델을 사용하면 알고리즘이 자체 신경망을 통해 예측의 정확성 여부를 스스로 판단할 수 있어 인간의 도움이 필요하지 않습니다.


손전등의 예로 돌아가 봅시다. 누군가 '어둡다'라는 단어를 말하는 소리 신호를 인식할 때 불이 켜지도록 손전등을 프로그래밍할 수 있습니다. 이를 계속 학습하면서 그 단어가 포함된 구절을 들으면 해당 작업을 수행하게 됩니다. 손전등에 딥 러닝 모델이 있다면 '안 보여' 또는 '스위치가 안 켜져'라는 신호가 있을 때, 어쩌면 빛 센서와 함께 불이 켜져야 한다는 것을 이해하게 될 수 있습니다.

딥 러닝 모델은 자체적인 컴퓨팅 방법, 즉 자체적인 두뇌를 가진 것처럼 보이는 기술을 통해 학습할 수 있습니다.

정리하면, 머신 러닝과 딥 러닝의 차이는 다음과 같습니다.

  • 머신 러닝은 알고리즘을 사용하여 데이터를 구문 분석하고 해당 데이터에서 학습하며, 학습한 내용에 따라 정보에 근거한 결정을 내립니다.

  • 딥 러닝은 알고리즘을 계층으로 구성하여 자체적으로 배우고 지능적인 결정을 내릴 수 있는 '인공 신경망'을 만듭니다.

  • 딥 러닝은 머신 러닝의 하위 개념입니다. 둘 다 광범위한 인공 지능의 폭넓은 카테고리에 속하지만 인간과 가장 유사한 AI를 구동하는 것은 바로 딥 러닝입니다.

머신 러닝의 다양한 유형

좀 더 깊이 파고들기 위해, 머신 러닝의 세 가지 주요 유형과 각 차이점을 살펴보겠습니다.

딥 러닝 알고리즘의 다양한 유형

머신 러닝은 컴퓨터가 놀라운 작업을 해낼 수 있게 하지만, 인간의 지능을 복제하는 것은 여전히 역부족입니다. 반면에 심층 신경망은 인간의 뇌를 본떠 훨씬 더 정교한 수준의 인공 지능을 나타냅니다.

딥 러닝 알고리즘에는 몇 가지 다른 유형이 있는데, 그 중 가장 인기 있는 모델을 살펴보겠습니다.

합성곱 신경망

합성곱 신경망(CNN)은 이미지 처리와 개체 감지를 위해 특별히 설계된 알고리즘입니다. '합성곱'은 이미지 내 모든 요소를 평가하기 위해 이미지를 필터링하는 고유한 프로세스입니다.

합성곱 신경망은 기계에게 시각적 세계를 처리하는 방법을 가르치는 AI 분야인 컴퓨터 비전을 강화하는 데 흔히 사용됩니다. 그리고 안면 인식 기술은 컴퓨터 비전의 일반적인 용도입니다.

순환 신경망

순환 신경망(RNN)에는 알고리즘이 과거 데이터 포인트를 '기억'하도록 하는 피드백 루프가 내장되어 있습니다. 순환 신경망은 과거 이벤트에 대한 메모리를 사용해 현재 사건에 대한 이해를 알리거나 미래를 예측할 수 있습니다.

이러한 수준의 맥락이 주어지면, 심층 신경망은 더 잘 '생각'할 수 있습니다. 예를 들어, 순환 신경망으로 구동되는 지도 앱은 교통체증이 악화되는 경향이 있는 때를 '기억'할 수 있습니다. 그런 다음 이 지식을 사용해 혼잡 시간 교통 체증에 걸린 경우 대체 경로를 추천해 줍니다.

미래의 연료로서의 데이터

현재 '빅데이터 시대'에서 만들어지는 방대한 양의 새로운 데이터로 인해 덕분에 우리는 아직 상상조차 할 수 없는 혁신을 보게 될 것입니다. 데이터 과학 전문가들에 따르면, 이러한 획기적인 발전 중 일부는 딥 러닝 애플리케이션이 될 가능성이 높습니다.

중국의 주요 검색 엔진 Baidu의 전 선임 과학자이자 Google Brain 프로젝트의 리더 중 한 명인 Andrew Ng은 Wired 매거진에 딥 러닝 모델에 대한 탁월한 비유를 피력했습니다.

"AI는 로켓선을 구축하는 것과 비슷해요. 거대한 엔진과 많은 연료가 필요합니다."라고 Wired의 기자 Caleb Garling에게 말했습니다. "엔진이 크지만 연료가 적다면 궤도에 오르지 못합니다. 엔진이 작고 연료만 많다면 이륙하지도 못할 것입니다. 로켓을 만들려면 거대한 엔진과 많은 연료가 필요합니다. 딥 러닝에 비유하자면, 로켓 엔진은 딥 러닝 모델이고 연료는 이러한 알고리즘에 공급할 수 있는 엄청난 양의 데이터인 셈이지요."

그렇다면 머신 러닝과 딥 러닝은 고객 서비스에 어떤 의미가 있을까요?

오늘날 고객 서비스 분야의 AI 애플리케이션 중 다수는 머신 러닝 알고리즘을 활용합니다. 이러한 애플리케이션은 셀프 서비스를 촉진하고, 상담사 생산성을 높이며, 워크플로우의 안정성을 향상시키는 데 사용됩니다.

이러한 알고리즘에 공급되는 데이터는 지속적으로 유입되는 고객의 쿼리로부터 발생하며, 여기에는 고객이 겪고 있는 문제에 관련된 전후상황이 포함됩니다. 그러한 전후상황을 AI 애플리케이션에 종합하면 결과적으로 더욱 빠르고 정확한 예측이 이루어집니다. 이는 많은 기업에게 인공 지능에 큰 기대를 갖게 했으며, 업계 리더는 비즈니스 관련 AI의 가장 실용적인 사용 사례는 바로 고객 서비스 부문일 것이라고 추측합니다.

예를 들어, 머신 러닝과 딥 러닝 모두 컴퓨터가 텍스트와 음성을 이해할 수 있도록 하는 컴퓨터 과학의 한 분야인 자연어 처리(NLP)를 강화하는 데 사용됩니다. CX 업계에서 아마존 알렉사와 애플의 시리는 음성 인식을 사용해 소비자의 질문에 대답할 수 있는 '가상 상담하'의 두 가지 좋은 예입니다.

AI 기반 고객 서비스 봇 또한 이와 동일한 학습 방법을 사용해 입력된 텍스트에 응답합니다. 이를 구현한 탁월한 실제 사례로는 Zendesk의 고급 봇이 있습니다. 업계에서 가장 방대한 고객 의도 데이터베이스를 활용하는 메시징 및 이메일용 향상된 봇으로, 업계 내 CX팀에 특화되어 더욱 개인화되고 정확한 응답, 상담사 생산성 향상 및 빠른 설정이 가능합니다.

여기에서 봇 구축 도구에 대해 자세히 알아보세요.

추가 관련 사례

2 min read

기업이 AI를 통해 불확실성에 대비할 수 있도록 돕는 방법

기업에게 있어 복원력은 선택이 아닌 필수 조건입니다. 따라서 많은 기업이 도전의 시기를 헤쳐 나가기 위해 AI와 CX 팀에 의존하고 있습니다.

5 min read

공감력이 있는 고객 경험을 만드는데 AI가 핵심인 이유

공감이 인간만의 고유한 특성이라면, 공감 AI는 고객 경험을 더욱 풍부하고 인간적이며 대규모로 제공할 수 있게 해 줍니다.

6 min read

Zendesk AI와 함께 스마트한 CX의 미래를 열다

오늘 선보인 Zendesk AI는 수년간 축적된 Zendesk의 데이터와 인사이트를 새로운 AI 기술과 접목해 즉각적으로 고객 경험을 개선하는 새로운 인텔리전스 계층입니다.

6 min read

AI가 상담사 인텔리전스를 강화하고 CX 팀을 혁신하는 방법

고객의 재방문이 이어지는 고객 경험을 원한다면, 상담사와 AI의 긴밀한 협력이 반드시 필요합니다.